THE REACTION OF THIAZOLO[3,2-b]PYRIDAZINIUM PERCHLORATES WITH HYDRAZINES.
FORMATION OF 1,4-BIS-(2-VINYL-3-PYRIDAZINYLIDENE)TETRAZENES

Kazue SATOH and Tadashi MIYASAKA*

School of Pharmaceutical Sciences, Showa University

Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142

Treatment of thiazolo[3,2- \underline{b}]pyridazinium perchlorates with hydrazine hydrate in acetonitrile afforded the title compounds and several products depending upon its reaction time and temperature and difference of substituent. Catalytic reduction of the tetrazenes gave $2\underline{H}$ -3,4-dihydropyridazino[6,1- \underline{c}]triazines. Oxidation with 30% $\underline{H}_2\underline{O}_2$ yielded pyridazino[6,1- \underline{c}]-3-triazinones.

In the course of our studies on the synthesis and the reaction of pi-deficient condensed azolium salts, 1) almost all of \underline{C} -, \underline{O} -, \underline{S} - and \underline{N} -nucleophiles were revealed to attack at C_{8a} , the most electron-deficient position of oxazolo[3,2- \underline{b}]pyridazinium salts. 2) However, in the case of the thiazolo[3,2- \underline{b}]pyridazinium salts (I), \underline{C} - and \underline{S} -nucleophiles were proved to attack at C_7 - and/or C_8 -position to furnish ylide- and/or enamine-quinoid type compounds through a new nucleophilic substitution reaction with participation of triplet oxygen. 3) In this communication, we present a reaction of the salts (I) with hydrazines as N-nucleophile to furnish new heterocyclic systems.

When a solution of 6-phenylthiazolo[3,2-b]pyridazinium perchlorate (Ib) was treated with 3 equivalent hydrazine hydrate (100%) in refluxing acetonitrile, orangered prisms of 1,4-bis-(6-phenyl-2-winyl-3-pyridazinylidene)tetrazene (IIb)[$C_{24}H_{20}N_8$; Mass (m/e): 420 (M⁺), 171 (corresponding to 3-amino-6-phenylpyridazine); UV λ max (CHCl₃, nm): 234.5, 275.0, 320.0]⁴) and N_N' -bis-[2-(6-methylpyridazin-3-thion)yl-phenylacetoaldimine](IIIb) [mp 217-218°(d); NMR S (CDCl₃, ppm): 5.61 (2H, d, J=4Hz), coupled with a peak at δ 7.83 ppm), 7.44 (1H, d, J=9Hz), 7.83 (1H, m), 7.88 (1H, d, J=9Hz); Mass (m/e): 456 (M⁺), 213 (1/2M⁺-NH), 188 (6-phenylpyridazin-3-thione)] were obtained with evolution of hydrogen sulfide. In addition to IIc and IIIc [mp 190-195°], similar treatment of Ic furnished 7-methyl-4-phenylpyridazino[6,1-c]triazinium perchlorate (VII).

Heating of tetrazene (IIc) with hydrazine hydrate and perchloric acid (5 and 2 equivalents each) in acetonitrile for 3 hours gave 6-methyl-3-phenylimidazo[1,2- \underline{b}]-pyridazine (VI) [20%; picrate mp 209-210°; Mass (m/e): 209 (M⁺); NMR δ (CDCl₃, ppm): 2.60 (3H, s), 6.93 (1H, d, J=9Hz), 7.87 (1H, d, J=9Hz), 7.94 (1H, s, C₂- \underline{H})] and colorless flakes of VII [35%; mp 225-227°; NMR δ (DMSO-d₆, ppm): 2.76 (3H, s), 7.93 (1H, d, J=10Hz), 8.55 (1H, d, J=10Hz), 8.82 (1H, s, C₃- \underline{H})] (Chart 2).

Reaction of the perchlorates (R^1 =Me; Id,e) with hydrazine hydrate gave 8-aminothiazolo[3,2-b]pyridazinium perchlorates (IVd,e) as colorless needles instead of the

corresponding tetrazenes (Table I and III). 8-Amino-compounds (IVd,e) were also obtained by the reaction of Id,e with hydroxylamine hydrochloride and potassium hydroxide in dimethyformamide at room temperature. However, similar treatment of the salts with a phenyl substituent at C_3 or of those without any substituent at C_3 (Ia,b,c) gave an intractable mixture. By conducting the reaction of I with hydrazine hydrate at room temperature, red crystals of $2\underline{H}$ -3,4-dihydropyridazino[6,1- \underline{c}]triazines (Va-e) were isolated instead of the tetrazenes (II) or 8-amino-compounds (IV).

II
$$\frac{N_2H_4 \cdot H_2O}{70^{\circ}/_{\circ} HClO_4}$$
 \rightarrow N \rightarrow Ph \rightarrow N \rightarrow

Catalytic reduction of tetrazene (IIb) with 5% palladium charcoal in acetic acid afforded red prisms of pyridazinotriazine (Vb) in 63% yield. Catalytic reduction of tetrazenes gave reportedly two moles of amines with evolution of nitrogen. ⁵⁾ Formation of Vb by catalytic reduction of IIb seems to induced by cyclization due to nucleophilicity of the $\underline{\text{N}}$ -vinyl moiety dtring the reduction. By heating the tetrazene (IIb) with 30% $\underline{\text{H}}_2\text{O}_2$ at 50° for 45 minutes, 3,4-dihydropyridazino[6,1- $\underline{\text{c}}$]-3-triazinone

Reaction condition						Products and yield (%)			
I	molar ratio	react.temp.	time (hr.)	I	ΙΙ	III	IV	V	VII
a	3	reflux*	1	-	28	9	-	-	-
а	5	r.t.	24	-	-	9	-	53	-
а	10	r.t.	6	_	10	18	-	28	-
b	3	reflux	1	_	48	7	-	-	-
b	10	r.t.	24	-	-	41	-	33	-
С	3	reflux	1	5	18	21	-	-	28
С	10	r.t.	20	-	25	24	-	17	-
С	10	r.t.	42	-	17	10	-	34	-
d	3	reflux	4	-	-	19	54	-	-
d	10	r.t.	44	26	-	7	-	21	-
e	10	reflux	1	_	-	18	35	-	-
е	10	r.t.	26	-	-	_	-	27	-

Table I. Products from reaction of I with hydrazine hydrate

*) Solvent: CH₃CN

(VIIIb) [mp 182-192°; IR ν max(KBr cm⁻¹): 1650 (sh), 1640; NMR & (CDC1₃, ppm): 4.72 (2H, s, C₄-CH₂); Mass (m/e): 226 (M⁺), 197 (M⁺-29)] was obtained. By oxidation of IIa and IIc in the same manner, VIIIa [42%; mp 193-196°(d)] and VIIIc [49%; mp 237-247° (d)] were obtained, respectively. VIIIa was also obtained by heating of Va with 30% $\rm H_{2}O_{2}$ in acetic acid at 50° for 30 minutes (Chart 3).

A plausible mechanism is shown in Chart 1. Nucleophilic addition of the hydrazine at C_2 of I gives III through the intermediate (A). Isolation of (A) was successful as the N-methyl derivative [(A), R=R^2=Me, R^1=Ph; mp 114-115.5°] by treatment of Ic with methyhydrazine. 8-Amino-compound (IV) is formed by the initial attack of the hydrazine or hydroxylamine at C_8 and followed by

II
$$\xrightarrow{30\% \text{H}_2\text{O}_2}$$
, AcOH $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{Pd}_C}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{R}^1}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{N}}$

elimination of ammonia or water. When the hydrazine attacks at C_{8a} , the labile intermediate (C) which is not isolated but detected by thin-layer chromatography, suffers either oxidative dimerization to form II with concomitant elimination of hydrogen sulfide or reductive recyclization to give V. The salt (I) bearing a methyl substituent at C_3 gives IV as a result of preferential attack of the reagent at C_8 instead of C_{8a} due to stabilization of the thiazole N-imine type intermediate (B) by hyperconjugation of the methyl group. The mechanism for the formation of II and V is not

Table II. Tetrazenes (II)

Compd. No.	R^1	R^2	(°C (d))	На	NMR S Hb	(ppm in CDC1 Hc	³⁾ С ₄ - <u>н</u>	С ₅ - <u>Н</u>
IIa	Н	CH ₃	225-227.5			4.57(d,d)		
				Ja,b=	3.4Hz,Jb,c	=5.9Hz, Ja,c	=12.7Hz J	4,5=9.3Hz
IIb	Н	$^{\mathrm{C}}_{6}^{\mathrm{H}}_{5}$	211-213	3.82(q)	4.46(d,d)	4.75(d,d)	6.73(d)	6.54(d)
				Ja,b=	3Hz, Jb,c=0	6Hz, Ja,c=131	Hz, J	4,5=10Hz
IIc	C_6H_5	CH ₃	210-211	4.72(d)	5.32(d),	6.98-7.24	5.72(d)	6.04(d)
				Ja,b≕	2Hz,	(arom. 5H)	J	4,5=10Hz

Compd.		2	Мр	NMR	8 (ppm)*	<u> </u>	IR V KBr (ci	n ⁻¹)
No.	R ^{·1}	R ²	(°C)	С ₂ - <u>н</u>	С ₇ - <u>Н</u>	C ₈ -N <u>H</u> 2#	NH	ŃH ₂
IVd	CH ₃	CH ₃	239-241	8.44(s)	6.92(s)	8.24(s)	3430 3240 3340 3100	1650 1580
IVe	CH ₃	с ₆ н ₅	285-286	8.43(s)	7.40(s)	8.31(s)	3400 3240 3340 3120	1650 1580

Table III. 8-Aminothiazolo[3,2-b]pyridazinium perchlorates (IV)

* Solvent:DMSO-d₆ # D₂O exchangeable

Table IV. 3,4-Dihydropyridazino $[6,1-\underline{c}][1,2,4]$ triazines (V)

Compd	•	^	Mp	NMR	8 (ppm in C	CDC1 ₃)	
No.	R ₁	R ²	(°C)	С ₃ - <u>н</u>	C ₄ - <u>H</u>	C ₈ - <u>H</u>	С ₉ - <u>Н</u>
Va	Н	CH ₃	57- 58	3.15(2H,t)	3.47(2H,t)	6.14(1H,d)	6.46(1H;d)
				J _{3,4} =	=4.5Hz	J _{8,9} =	10Hz
Vb	Н	С ₆ Н ₅	124-125	3.28(2H,t)	4.15(2H,t)	6.65(1H,d)	6.84(1H,d)
				^J 3,4	4.5Hz	J _{8,9} =	10Hz
Vc	$^{\mathrm{C}}6^{\mathrm{H}}5$	CH ₃	185-186	3.27(2H,d)	3 7 7	6.16(1H,d)	6.59(1H,d)
				^J 3,4	7.28(5H,s) =2.8Hz	J _{8,9} =	10Hz
Vd	CH ₃	CH ₃	202(pic.)	3.02(2H,d)	4.12(1H,m)	6.15(1H,d)	6.53(1H,d)
				J _{3,4} =	1.48(3H,d) =2.9Hz, 6.3H	J _{8,9} =	10Hz
Ve	CH ₃	С ₆ Н ₅	122-123	3.10(2H,d)		6.63(1H,d)	6.73(1H,d)
				J _{3,4} =	1.57(3H,d) =3Hz, 6Hz	J _{8,9} =	10Hz

yet completely elucidated. Presumably \underline{S} - and \underline{C} -nucleophiles attack at C_7 and/or C_8 as soft base, while \underline{O} - and \underline{N} -nucleophiles attack at C_{8a} as hard base.

REFIERENCES

- 1. a) H. Ohtsuka, T. Miyasaka, and K. Arakawa, Chem. Pharm. Bull., <u>23</u>, 3254 (1975), and loc. cit. b) K. Arakawa, T. Miyasaka, and K. Satoh, ibid., <u>25</u>, 299 (1977).
 - c) S. Sawada, T. Miyasaka, and K. Arakawa (the late), ibid., 26, 275 (1978).
- 2. a) K. Satoh, T. Miyasaka, and K. Arakawa, Yakugaku Zasshi, 97, 422 (1977).
 - b) K. Satoh, T. Miyasaka, and K. Arakawa, Chemistry Letters, 1977, 1501.
- 3. a) K. Satoh, T. Miyasaka, and K. Arakawa, Chem. Pharm. Bull., 25, 307 (1977).
 - b) K. Satoh, T. Miyasaka, and K. Arakawa (the late), ibid., in press.
- 4. Satisfactory elemental analyses compatible with the structural assignments were obtained for all compounds with melting point described herein. Melting points were uncorrected.
- 5. P.A.S. Smith, "Open-Chain Nitrogen Compouds", W.A. Benjamin, Inc. New York (1966) vol. II, p.348.